Abstract

AbstractWe present Mars Atmosphere and Volatile EvolutioN (MAVEN) observations of a giant magnetic flux rope in the Martian dayside ionosphere. The flux rope was observed at an altitude of <300 km, downstream from strong subsolar crustal magnetic fields. The peak field amplitude was ∼200 nT, resulting in the largest difference between the observed magnetic field strength and a model for crustal magnetic fields of the entire MAVEN primary science phase. MAVEN detected planetary ions, including H+, O+, and , across the structure. The axial orientation estimated for the flux rope indicates that it likely formed as a result of interactions between the local crustal and overlaid draped interplanetary magnetic fields. Pitch angle distributions of ionospheric photoelectrons imply that this structure is connected to the Martian upper atmosphere. However, the flux rope is not present in observations at the next commensurable orbit crossing (approximately two Martian days later), implying that it eventually detaches from the atmosphere and is carried downstream. The flux rope observations occurred during an interplanetary coronal mass ejection event at Mars, suggesting that the disturbed upstream state played a role in allowing the interplanetary magnetic field to penetrate deeper into the Martian ionosphere than is typical, allowing the formation of the flux rope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call