Abstract
We study Maurer–Cartan moduli spaces of dg algebras and associated dg categories and show that, while not quasi-isomorphism invariants, they are invariants of strong homotopy type, a natural notion that has not been studied before. We prove, in several different contexts, Schlessinger–Stasheff type theorems comparing the notions of homotopy and gauge equivalence for Maurer–Cartan elements as well as their categorified versions. As an application, we re-prove and generalize Block–Smith’s higher Riemann–Hilbert correspondence, and develop its analogue for simplicial complexes and topological spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.