Abstract

The purpose of the study is to better understand the relationship between organic matter optical properties and the presence of potentially large oil and gas accumulations in Arctic Canada. The type and thermal maturity of the dispersed organic matter of the Mesozoic formations in the southern Sverdrup Basin, Melville Island, have been studied using organic petrology and Rock-Eval pyrolysis. All types of organic matter are present in the strata of Mesozoic age. Hydrogen-rich liptinite is dominated by alginite ( Botryococcus and Tasmanites), dinoflagellate cysts and amorphous fluorescing matrix. Sporinite, cutinite, resinite and liptodetrinite made up the lesser hydrogen-rich exinite. Vitrinite reflectance in Cretaceous sediments ranges from 0.36 to 0.65% R o; in Jurassic sediments it ranges from 0.40 to 1.0% R o and in the Triassic from 0.45 to 1.30% R o, showing an overall increase with depth of burial. Cretaceous sediments of the Deer Bay Formation are thermally immature and contain organic matter of terrestrial origin. The Upper Jurassic shales of the Ringnes Formation contain predominantly organic matter of liptinitic and exinitic origin with a considerable vitrinitic input. At optimum maturation levels, potential source beds of this formation would have a good hydrocarbon-generating potential. The hydrocarbon potential, however, would be limited to the generation of gases due to the leanness of the source rocks. Parts of the Lower Jurassic Jameson Bay Formation are organic-rich and contain a mixed exinitic/vitrinitic organic matter, Botryococcus colonial algae but visible organic matter is dominated by high plant remains (mainly spores). The Schei Point Group shales and siltstones contain organic matter of almost purely marine origin, whereas the predominantly higher plant-derived organic matter found in the Deer Bay, Jameson Bay and partly in the Ringnes formations have higher TOC. Among the Schei Point Group samples, the Cape Richards and Eden Bay members of the Hoyle Bay Formation are richer in TOC (>2.0%) than the Murray Harbour Formation (Cape Caledonia Member). This may reflect differences in the level of maturity or in the depositional environment (more anoxic conditions for the former). Regional variations in the level of thermal maturity of Mesozoic sediments in Sverdrup Basin appear to be a function of burial depth. The Mesozoic formations thicken towards the basin centre (NNE direction), reflecting the general pattern of increasing thermal maturity north of Sabine Peninsula. However, the regional thermal-maturation pattern of the Mesozoic is not solely a reflection of the present-day geothermal gradient, which indicates that anomalous zones of high geothermal gradient may have existed in the past, at least since when the Mesozoic sediments attained maximum burial depth. The contour pattern of the regional variation of maturity at the base of numerous Triassic formations is similar to that of the structural contours of the Sverdrup Basin, indicating that present-day maturation levels are largely controlled by basin subsidence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call