Abstract

The epididymis has been understudied, in part due to its cancer resistance and the development of effective technologies for sperm injection and in vitro fertilization. However, it is worthy of study because – absent advanced reproductive technology – its proper function is essential for conceiving children: sperm leaving the testis are immature and nonfertile. Epididymal functions can be divided into several general categories (1) concentration of sperm; (2) functional maturation; (3) storage in a quiescent state until ejaculation; (4) removal of degenerating sperm; (5) provision of appropriate conditions for survival; (6) transport by the myoid cells; (7) protection; (8) maintenance of the blood epididymal barrier. In the past decade investigators have focused on those maturational changes of the integral proteins of the sperm plasma membrane which are directly related to sperm–ova interactions. It has traditionally been thought that changes in the sperm plasma membrane proteins were limited to simple binding or removal of proteins or interactions with the proteases, glycosylases and glycotransferases present. However, the epididymis can also release secretory products in bulk through apical blebs and inject integral membrane proteins with epididymosomes which fuse with the plasma membrane. The epididymis also activates and cleaves enzymes present on the sperm surface (e.g., germ cell angiotensin converting enzyme), thus enabling them to modify proteins on the sperm membrane. Aside from the need to understand epididymal function relative to the sperm, basic science on epididymal physiology is warranted because it may help us understand the functioning of androgens, protection of tissues from oxidative damage, and resistance to cancer and benign hyperplasic growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.