Abstract
Most studies on CO2 emissions reduction strategies that address the ‘two-degree scenario’ (2DS) recognize a significant role for CCS. For CCS to be effective, it must be deployed globally on both existing and emerging energy systems. For nations with large-scale emissions, offshore geologic CO2 storage provides an attractive and efficient long-term strategy. While some nations are already developing CCS projects using offshore CO2 storage resources, most geographic regions have yet to begin. This paper demonstrates the geologic significance of global continental margins for providing broadly-equitable, geographically-relevant, and high-quality CO2 storage resources. We then use principles of pore-space utilization and subsurface pressure constraints together with analogs of historic industry well deployment rates to demonstrate how the required storage capacity can be developed as a function of time and technical maturity to enable the global deployment of offshore storage for facilitating 2DS. Our analysis indicates that 10–14 thousand CO2 injection wells will be needed globally by 2050 to achieve this goal.
Highlights
Most studies on CO2 emissions reduction strategies that address the ‘two-degree scenario’ (2DS) recognize a significant role for CO2 Capture and Storage (CCS)
We demonstrate, using historic industry hydrocarbon well development data at three different regional scales, combined with rational average injection rates informed by the stratigraphic pressure analysis and practical experience, that accessing this storage resource is possible on the required timeframes and within pressure constraints that allow geological storage of captured CO2 (GCS) to deliver the expected emissions mitigation role
A third class of storage projects, which we will term ‘Class C’ will be the cases where active pressure management is used to further enhance storage availability. This will allow natural pressure limits to be circumvented by active production schemes, including brine production[43] the use of the ‘pressure space’ created by oil and gas production[44] or direct injection into depleted gas fields[45]. We argue that this transition from early use of CO2 injection into aquifers without significant pressure limits (Class A), through to CO2 storage in pressure-limited aquifers (Class B) and eventually to pressure management at the basin scale (Class C), represents a global technology development strategy for storage (Table 1), which is analogous to the historic oil and gas production strategy which has moved from primary recovery, to secondary recovery technology, and to tertiary methods
Summary
For nations with large-scale emissions, offshore geologic CO2 storage provides an attractive and efficient long-term strategy. The ‘wedge model’ analysis for identifying opportunities for CO2 atmospheric reductions[4] remains useful for anticipating contributions from different sectors – essentially a blend of growth in renewable energy use, improved energy efficiency, and various means of decarbonization of energy production and consumption. In this construct, CO2 Capture and Storage (CCS) is anticipated to support approximately 13% of total cumulative emissions reductions through 2050, requiring around 120,000 million tones (Mt) of cumulative CO2 reduction by 2050. CCS is demonstrated and underway at industrial scales globally; an order of magnitude increase is needed to meet the long-term expectations for CCS and to realize the 2DS goals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.