Abstract

Proliferation and differentiation are tightly controlled during neural development. In the embryonic neural plate, primary neurogenesis is driven by the proneural pathway. Here we report the characterization of Maturin, a novel, evolutionarily conserved protein that is required for normal primary neurogenesis. Maturin is detected throughout the early nervous system, yet it is most strongly expressed in differentiating neurons of the embryonic fish, frog and mouse nervous systems. Maturin expression can be induced by the proneural transcription factors Neurog2, Neurod1, and Ebf3. Maturin overexpression promotes neurogenesis, while loss-of-function inhibits the differentiation of neuronal progenitors, resulting in neural plate expansion. Maturin knockdown blocks the ability of Neurog2, Neurod1, and Ebf3 to drive ectopic neurogenesis. Maturin and Pak3, are both required for, and can synergize to promote differentiation of the primary neurons in vivo. Together, our results suggest that Maturin functions during primary neurogenesis and is required for the proneural pathway to regulate neural differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.