Abstract

Astrocytes closely contact neurons where they respond to neuronally released glutamate in immature brain slices. In previous studies, neither metabotropic nor ionotropic glutamate receptor-mediated responses were detected by imaging Ca2+ in astrocytes from mature (P21-P42) animals, suggesting astrocyte glutamate receptors only contribute to hippocampus physiology during development. In contrast to Ca2+ imaging, published electrophysiological experiments suggest P30-P35 astrocytes have alpha-amino-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. For this study, we imaged astrocytes in P31-P38 hippocampal slices to determine if metabotropic and ionotropic glutamate receptor activation elevates intracellular calcium in mature astrocytes. Drugs were perfused while [Ca2+]i was monitored (confocal imaging) in cells loaded with Calcium Green 1-AM. Imaged cells were subsequently identified as astrocytes by GFAP/S-100 immunostaining. Astrocytic Ca2+ increased after glutamate application in the presence of a glutamate uptake inhibitor. An agonist at group I/II metabotropic glutamate receptors, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), elicited Ca2+ increases as did group I agonist 3,5-dihydroxyphenylglycine (DHPG), suggesting that mature astrocytes respond to glutamate via metabotropic glutamate receptors. AMPA also elicited Ca2+ elevations that were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and occurred after treatment with omega-conotoxin MVIIC to block neurotransmitter release. These results demonstrate that astrocytes in mature hippocampus have functional ionotropic and metabotropic glutamate receptors that regulate astrocytic calcium levels. Glutamatergic regulation of astrocytic [Ca2+]i may be involved in synapse modeling, long-term potentiation, excitotoxicity and other events dependent on glutamatergic transmission in adult hippocampus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.