Abstract

White matter diffusion anisotropy in the acoustic radiations was characterized as a function of development in autistic and typically developing children. Auditory-evoked neuromagnetic fields were also recorded from the same individuals and the latency of the left and right middle latency superior temporal gyrus auditory ~50ms response (M50)11M50: superior temporal gyrus auditory 50ms response; FA: fractional anisotropy; WM: white matter; MEG: magnetoencephalography; DTI: diffusion tensor imaging; ASD: autism spectrum disorder; TD: typically developing. was measured. Group differences in structural and functional auditory measures were examined, as were group differences in associations between white matter pathways, M50 latency, and age. Acoustic radiation white matter fractional anisotropy did not differ between groups. Individuals with autism displayed a significant M50 latency delay. Only in typically developing controls, white matter fractional anisotropy increased with age and increased white matter anisotropy was associated with earlier M50 responses. M50 latency, however, decreased with age in both groups. Present findings thus indicate that although there is loss of a relationship between white matter structure and auditory cortex function in autism spectrum disorders, and although there are delayed auditory responses in individuals with autism than compared with age-matched controls, M50 latency nevertheless decreases as a function of age in autism, parallel to the observation in typically developing controls (although with an overall latency delay). To understand auditory latency delays in autism and changes in auditory responses as a function of age in controls and autism, studies examining white matter as well as other factors that influence auditory latency, such as synaptic transmission, are of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.