Abstract

Aims:To compare developmental changes of delta 1 (0.5-2.0 Hz) and delta 2 (2.25-3.75 Hz) power spectra between healthy monozygotic (MZ) and dizygotic (DZ) twin pairs and among MZ and DZ twin groups during active/REM (AS/REM) and quiet/NREM (QS/NREM) sleep stages at 38th, 46th, and 52nd weeks of postmenstrual age (PMA).Materials and methods:Electroencephalography (EEG) recordings were analyzed using fast Fourier transforms. Differences in the developmental changes of delta power within twin pairs and between twin groups were estimated by calculating mean absolute differences of relative spectral values in delta 1 (0.5-2 Hz) and delta 2 (2.25-3.75 Hz) frequencies.Results:A review of electrodes showed that relative delta 1 power decreased, whereas delta 2 power increased from 38th toward 52nd week of PMA regardless of zygosity, sleep stages, and electrode position. Twin groups did not significantly differ (P > .05) in within-pair MZ and DZ similarity for delta 1 and delta 2 power spectra; similarity between MZ twin partners for delta 1 and delta 2 power spectra was as high as that of DZ twin partners on each electrode position, sleep stage, and period of measurement.Conclusions:Developmental changes of delta 1 and delta 2 power spectra occurred equally in MZ and DZ twin groups during AS and QS sleep stages at 38th, 46th, and 52th PMA. The rhythm of EEG maturation evidenced by the maturation of delta 1 and delta 2 power spectra was not dependent on zygosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.