Abstract
Maturation of porcine oocytes was examined after oocytes were cooled at the germinal vesicle stage. Cumulus-oocyte complexes (COCs) collected from medium-sized follicles were cooled at 24 degrees C or 4 degrees C for 5, 30 or 120 min in a solution with or without 1.5 M dimethylsulfoxide (DMSO). After rewarming, COCs were cultured in maturation medium at 39 degrees C, 5% CO2 in air for 44 h. Meiotic spindle organisation (by immunostaining and confocal microscopy), nuclear maturation (by orcein staining) and cytoplasmic maturation (by intracellular glutathione assay) of oocytes were examined after maturation. When COCs were cooled at 24 degrees C for various times in the medium without DMSO, a tendency to decreased spindle formation, nuclear maturation and cytoplasmic maturation was observed, but there was no statistical difference compared with controls. Addition of DMSO during cooling inhibited subsequent nuclear maturation and spindle formation. When COCs were cooled at 4 degrees C, both nuclear and cytoplasmic maturation as well as spindle formation were inhibited in most oocytes in a time-dependent manner. DMSO during cooling did not have any beneficial effect on subsequent oocyte maturation and spindle formation. These results suggest that porcine oocytes are very sensitive to a drop in the temperature before exposure to culture. Cooling oocytes before maturation inhibits their subsequent spindle organisation, nuclear and cytoplasmic maturation. Addition of DMSO to the cooling solution did not protect porcine oocytes from cooling-induced damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.