Abstract

EMG responses to toe-up tilt perturbations on a movable platform system were analysed in 86 children between the age of 12 months and 13 years. To assess the relative contribution of peripheral and central nerve conduction properties, a concomitant recording of the fastest efferent pathways in the central and peripheral motor system was made using non-invasive transcranial magnetic stimulation of motor cortex and peripheral nerve roots. This allowed the determination of the fastest downstream efferent connection times from motor cortex to lumbar motor neuron pools and to measure the fastest efferent conduction from these motor neuron pools to effector muscles in the lower leg. The sequence observed for stance stabilizing EMG responses was similar to that obtained in earlier studies with short latency (SL) and middle latency (ML) companents occurring in the stretched triceps surae muscle and long latency (LL) responses occurring in the non-stretched tibialis anterior muscle. Homologous responses were also obtained in upper leg muscles, being recruited consistently later than those in lower leg muscles across all age groups. In the short latency range two different SL1- and SL2-responses were obtained in children of all age groups as well as in adult controls. Both the SL1- and the SL2-responses showed a flat developmental profile, reaching adult values between 20 and 30 months of age which correlated with that of the fastest efferents from lumbar motor neuron pools to leg muscles, i.e. the final motor path. ML-responses showed a steeper developmental profile.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call