Abstract

Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as being a promising source of cells for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. In the current study, we have fabricated cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials and demonstrated that supplementation of mesenchymal niche cells as well as provision of mechanical loading particularly stretching have significantly promoted the maturation of the cardiomyocytes and hence improved the mechanical functional characteristics of the tissue strips. Specifically, with 3% niche cells including both fibroblasts and mesenchymal stem cells, a more mature hESC-CMs derived cardiac strip was resulted, in terms of compaction and spreading of cells, and upregulation of molecular signature in both gene and protein expression of maturation. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of molecular signature markers and functional parameters including twitch force, elastic modulus and sarcomere length, when comparing with static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture, resulting in more mature cardiac strips. Our results contribute to bioengineering of functional heart tissue strips for drug screening and disease modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call