Abstract
Particle paths, emitted from distributed sources and passing out through slits of two gratings, G0 and G1, up to detectors, have been computed in detail by the path integral method. The particles under consideration are fullerene molecules with a De Broglie wavelength equal to 5 pm. The slits are Gaussian functions that simulate fuzzy edges of the slits. Waves of the matter computed by this method show perfect interference patterns both between the gratings and behind the second grating. Coherent and non-coherent distributed particle sources reproducing the interference patterns are discussed in detail. Paraxial approximation results from removing the distributed sources onto innity. This approximation gives a wave function reproducing an exact copy of the Talbot carpet. PACS numbers: 03.75.-b, 03.75.Dg, 42.25.Hz
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.