Abstract

The generalized Chaplygin gas (GCG) model is the prototype of a unified model of dark energy (DE) and dark matter (DM). It is characterized by equation-of-state (EoS) parameters $A$ and $\alpha$. We use a statistical analysis of the 2dFGRS data to constrain these parameters. In particular, we find that very small (close to zero) and very large values ($\alpha\gg 1$) of the equation-of-state parameter $\alpha$ are preferred. To test the validity of this type of unification of the dark sector we admit the existence of a separate DM component in addition to the Chaplygin gas and calculate the probability distribution for the fractional contributions of both components to the total energy density. This analysis favors a model for which the Universe is nearly entirely made up of the separate DM component with an almost negligible Chaplygin gas part. This confirms the results of a previous Newtonian analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.