Abstract

We model the cosmic medium as the mixture of a generalized Chaplygin gas and a pressureless matter component. Within a neo-Newtonian approach (in which, different from standard Newtonian cosmology, the pressure enters the homogeneous and isotropic background dynamics) we compute the matter power spectrum. The 2dFGRS data are used to discriminate between unified models of the dark sector (a purely baryonic matter component of roughly 5 percent of the total energy content and roughly 95 percent generalized Chaplygin gas) and different models, for which there is separate dark matter, in addition to that accounted for by the generalized Chaplygin gas. Leaving the corresponding density parameters free, we find that the unified models are strongly disfavored. On the other hand, using unified model priors, the observational data are also well described, in particular for small and large values of the generalized Chaplygin gas parameter $\alpha$. The latter result is in agreement with a recent, more qualitative but fully relativistic, perturbation analysis in Gorini et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.