Abstract
The rapid advancement of Industry 4.0 necessitates close collaboration among material research institutions to accelerate the development of novel materials. However, multi-institutional cooperation faces significant challenges in protecting sensitive data, leading to data silos. Additionally, the heterogeneous and non-independent and identically distributed (non-i.i.d.) nature of material data hinders model accuracy and generalization in collaborative computing. In this paper, we introduce the MatSwarm framework, built on swarm learning, which integrates federated learning with blockchain technology. MatSwarm features two key innovations: a swarm transfer learning method with a regularization term to enhance the alignment of local model parameters, and the use of Trusted Execution Environments (TEE) with Intel SGX for heightened security. These advancements significantly enhance accuracy, generalization, and ensure data confidentiality throughout the model training and aggregation processes. Implemented within the National Material Data Management and Services (NMDMS) platform, MatSwarm has successfully aggregated over 14 million material data entries from more than thirty research institutions across China. The framework has demonstrated superior accuracy and generalization compared to models trained independently by individual institutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.