Abstract

A secret sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum secret sharing schemes. In addition to providing a new perspective on quantum secret sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum secret sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum secret sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure state quantum secret sharing scheme with information rate one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.