Abstract
Over a finite field Fqm, the evaluation of skew polynomials is intimately related to the evaluation of linearized polynomials. This connection allows one to relate the concept of polynomial independence defined for skew polynomials to the familiar concept of linear independence for vector spaces. This relation allows for the definition of a representable matroid called the Fqm[x;σ]-matroid, with rank function that makes it a metric space. Specific submatroids of this matroid are individually bijectively isometric to the projective geometry of Fqm equipped with the subspace metric. This isometry allows one to use the Fqm[x;σ]-matroid in a matroidal network coding application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.