Abstract

Motivated by the intersection theory of moduli spaces of curves, we introduce psi classes in matroid Chow rings and prove a number of properties that naturally generalize properties of psi classes in Chow rings of Losev-Manin spaces. We use these properties of matroid psi classes to give new proofs of (1) a Chow-theoretic interpretation for the coefficients of the reduced characteristic polynomials of matroids, (2) explicit formulas for the volume polynomials of matroids, and (3) Poincaré duality for matroid Chow rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.