Abstract

We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian $Gr_{k,n}$. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of $M$. Our proofs are based on a natural extension of Postnikov's theory of generalized permutohedra. On exprime le polytope matroïde $P_M$ d'un matroïde $M$ comme somme signée de Minkowski de simplices, et on obtient une formule pour le volume de $P_M$. Ceci donne une expression combinatoire pour le degré d'une clôture d'orbite de tore dans la Grassmannienne $Gr_{k,n}$. Ensuite, on déduit des résultats analogues pour le polytope ensemble indépendant et pour le polytope matroïde drapeau associé à $M$. Nos preuves sont fondées sur une extension naturelle de la théorie de Postnikov de permutoèdres généralisés.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.