Abstract

In the classic k-center problem, we are given a metric graph, and the objective is to select k nodes as centers such that the maximum distance from any vertex to its closest center is minimized. In this paper, we consider two important generalizations of k-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows: (1) We consider the matroid center problem in which the centers are required to form an independent set of a given matroid. We show this problem is NP-hard even on a line. We present a 3-approximation algorithm for the problem on general metrics. We also consider the outlier version of the problem where a given number of vertices can be excluded as outliers from the solution. We present a 7-approximation for the outlier version. (2) We consider the (multi-)knapsack center problem in which the centers are required to satisfy one (or more) knapsack constraint(s). It is known that the knapsack center problem with a single knapsack constraint admits a 3-approximation. However, when there are at least two knapsack constraints, we show this problem is not approximable at all. To complement the hardness result, we present a polynomial time algorithm that gives a 3-approximate solution such that one knapsack constraint is satisfied and the others may be violated by at most a factor of $$1+\epsilon $$ . We also obtain a 3-approximation for the outlier version that may violate the knapsack constraint by $$1+\epsilon $$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.