Abstract

The hypothalamo-neurohypophysial system (HNS), synthesizing arginine vasopressin (AVP) and oxytocin (OXT), is well known to show structural plasticity during chronic physiological stimulation such as salt loading and lactation. In the present study, we undertook in the HNS to study localization and activity-dependent changes in the expression of matrix-degrading enzymes such as tissue plasminogen activator (tPA) and matrix metalloprotease-3 (MMP-3). Double labeling confocal microscopy demonstrated that the immunoreactivity of tPA was localized at AVP-positive dendrites in the supraoptic nucleus (SON) and AVP-positive terminals in the neurohypophysis (NH). The immunoreactivity of tPA was also seen at astrocytic processes in the HNS. Likewise, the immunoreactivity of MMP-3 was observed at AVP-positive dendrites and terminals. High magnification observation further revealed punctate distribution of tPA and MMP-3 immunoreactivity at dendrites and terminals, suggesting that they are localized at neurosecretory granules. Salt loading, known as the chronic stimulation to cause the structural plasticity, increased protein and mRNA levels of tPA in the SON but reduced protein levels of it in the NH. The chronic stimulation also increased protein levels of urokinase plasminogen activator in the SON, but the stimulation did not change protein levels of MMP-3 in the SON and NH. Depolarizing agent KCl released tPA from isolated neurosecretosomes, and this depolarization-dependent release was abolished by verapamil, a Ca 2+ channel blocker. These results demonstrate that tPA and MMP-3 are localized mainly at dendrites and terminals of AVP-expressing magnocellular neurons and tPA is released in an activity-dependent manner, suggesting that matrix-degrading proteases are candidate molecules to be concerned with the structural plasticity in the HNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.