Abstract
In this work, matrix-assisted pulsed laser evaporation was applied to achieve gentle deposition of polymer thin films onto surface acoustic wave resonators. Polyepichlorhydrin, polyisobutylene and polyethylenimine were deposited both onto rigid substrates e.g. Si wafers as well as surface acoustic wave devices using a Nd-YAG laser (266 nm, 355 nm, 10 Hz repetition rate). Morphological investigations (atomic force microscopy and optical microscopy) reveal continuous deposited polymer thin films, and in the case of polyethylenimine a very low surface roughness of 1.2 nm (measured on a 40×40 μm2 area). It was found that only for a narrow range of laser fluences (i.e. 0.1–0.3 J/cm2 in the case of polyisobutylene) the chemical structure of the deposited polymer thin layers resembles to the native polymer. In addition, in the case of polyisobutylene it was shown that the irradiation at 355-nm wavelength produces deviations in the chemical structure of the deposited polymer, as compared to its bulk structure. Following the morphological and structural characterization, only a set of well established conditions was used for polymer deposition on the sensor structures. The surface acoustic wave resonators have been tested using the Network Analyzer before and after polymer deposition. The polymer coated surface acoustic wave resonator responses have been measured upon exposure to various concentrations of dimethylmethylphosphonate analyte. All sensors coated with different polymer layers (polyethylenimine, polyisobutylene, and polyepichlorhydrin) show a clear response to the dimethylmethylphosphonate vapor. The strongest signal is obtained for polyisobutylene, followed by polyethylenimine and polyepichlorhydrin. The results obtained indicate that matrix-assisted pulsed laser evaporation is potentially useful for the fabrication of polymer thin films to be used in applications including microsensor industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.