Abstract

Matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) for the analysis of intact hair is a powerful tool for monitoring changes in drug consumption. The embedding of a low drug concentration in the hydrophobic hair matrix makes it difficult to extract and detect, and requires an improved method to increase detection sensitivity. In this study, an MSI method using MALDI-Fourier transform ion cyclotron resonance was developed for direct identification and imaging of olanzapine in hair samples using the positive ion mode. Following decontamination, scalp hair samples from an olanzapine user were scraped from the proximal to the distal end three times, and 5mm hair sections were fixed onto an Indium-Tin-Oxide (ITO)-coated microscopic glass slide. Esculetin (6,7-dihydroxy-2H-chromen-2-one) was used as a new hydrophobic matrix to increase the affinity, extraction and ionization efficiency of olanzapine in the hair samples. The spatial distribution of olanzapine was observed using five single hairs from the same drug user. This matrix improves the affinity of olanzapine in hair for molecular imaging with mass spectrometry. This method may provide a detection power for olanzapine to the nanogram level per 5mm hair. Time course changes in the MSI results were also compared with quantitative HPLC–MS/MS for each 5mm segment of single hair shafts selected from the MALDI target. MALDI imaging intensities in single hairs showed good semi-quantitative correlation with the results from conventional HPLC–MS/MS. MALDI-MSI is suitable for monitoring drug intake with a high time resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.