Abstract

Ionic liquids are interesting solvents for a number of applications in chemistry and biotechnology. We characterized five different ionic liquids by laser desorption/ionization (LDI) and by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and studied the analysis of amino acids, peptides and proteins dissolved in these solvents. Signals of both anions and cations of the ionic liquids could be observed both in LDI- and in MALDI-MS. In the latter case, adduct formation between anions and cations of the analytes was observed. Amino acids, peptides and proteins could be analyzed in ionic liquids after addition of matrix substances. Sodium and potassium adducts were not observed in any analysis involving ionic liquids. Low molecular mass compounds and peptides could be analyzed best in the presence of water-immiscible ionic liquids, whereas proteins gave the best results in water-miscible ionic liquids. Optimal analysis conditions such as molar matrix-to-analyte and ionic liquid-to-matrix ratios were determined. Homogeneity of samples in the presence of ionic liquids was reduced compared with classical MALDI preparations. Relative quantitation of amino acids was possible using isotope-labeled internal standards. MALDI-MS thus can be used for the analysis of chemical reactions and the screening of enzyme-catalyzed reactions in ionic liquids and for the analysis of the biocatalysts dissolved in these solvents. Theoretical aspects of ion formation in the presence of ionic liquids both in LDI and MALDI analysis are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.