Abstract
Introduction: The Kronecker product of Hadamard matrices when a matrix of order n replaces each element in another matrix of order m, inheriting the sign of the replaced element, is a basis for obtaining orthogonal matrices of order nm. The matrix insertion operation when not only signs but also structural elements (ornamental patterns of matrix portraits) are inherited provides a more general result called a "vitrage". Vitrages based on typical quasi-orthogonal Mersenne (M), Seidel (S) or Euler (E) matrices, in addition to inheriting the sign and pattern, inherit the value of elements other than unity (in amplitude) in a different way, causing the need to revise and systematize the accumulated experience. Purpose: To describe new algorithms for generalized product of matrices, highlighting the constructions that produce regular high-order Hadamard matrices. Results: We have proposed an algorithm for obtaining matrix vitrages by inserting Mersenne matrices into Seidel matrices, which makes it possible to expand the additive chains of matrices of the form M-E-M-E-… and S-E-M-E-…, obtained by doubling the orders and adding an edge. The operation of forming a matrix vitrage allows you to obtain matrices of high orders, keeping the ornamental pattern as an important invariant of the structure. We have shown that the formation of a matrix vitrage inherits the logic of the Scarpi product, but is cannot be reduced to it, since a nonzero distance in order between the multiplicands M and S simplifies the final regular matrix ornamental pattern due to the absence of cyclic displacements. The alternation of M and S matrices allows you to extend the multiplicative chains up to the known gaps in the S matrices. This sheds a new light on the theory of a regular Hadamard matrix as a product of Mersenne and Seidel matrices. Practical relevance: Orthogonal sequences with floating levels and efficient algorithms for finding regular Hadamard matrices with certain useful properties are of direct practical importance for the problems of noise-proof coding, compression and masking of video data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.