Abstract

Over the last several years, a new theory of Nevanlinna-Pick interpolation with complexity constraint has been developed for scalar interpolants. In this paper we generalize this theory to the matrix-valued case, also allowing for multiple interpolation points. We parameterize a class of consisting of most interpolants of no higher degree than the central solution in terms of spectral zeros. This is a complete parameterization, and for each choice of interpolant we provide a convex optimization problem for determining it. This is derived in the context of duality theory of mathematical programming. To solve the convex optimization problem, we employ a homotopy continuation technique previously developed for the scalar case. These results can be applied to many classes of engineering problems, and, to illustrate this, we provide some examples. In particular, we apply our method to a benchmark problem in multivariate robust control. By constructing a controller satisfying all design specifications but having only half the McMillan degree of conventional H/sup /spl infin// controllers, we demonstrate the advantage of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.