Abstract

Myocardial infarction is a cardiovascular disease with high mortality. Human umbilical cord mesenchymal stem cells (hUC-MSCs) with strong self-renewal capacity and multipotency, provide the possibility of replacing injured cardiomyocytes. hUC-MSCs were cultured on polyacrylamide hydrogels with stiffnesses corresponding to Young's modulus of 13-16kPa and 62-68kPa which mimic the stiffnesses of healthy heart tissue and fibrotic myocardium. The expression of early myocardial markers Nkx2.5, GATA4, Mesp1 and the mature myocardial markers cTnT, cTnI, α-actin were detected by RT-PCR and Western Blot, which showed that soft matrix (13-16 kPa) tended to induce the differentiation of hUC-MSCs into myocardium, compared with stiff matrix (62-68 kPa). Piezos are mechanically sensitive non-selective cation channels. The expression of Piezo1 increased with the stiffness gradient of 1-10kPa, 13-16kPa, 35-38kPa and 62-68kPa on the 1st day, but Piezo2 expression was irregular. The expression of integrin β1 and calcium ions were also higher on stiff substrate than on soft substrate. hUC-MSCs tend to differentiate into myocardium on the matrix stiffness of 13-16 kPa. The relationship among matrix stiffness, Piezo1 and myocardial differentiation needs further validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.