Abstract

Matrix rigidity is a critical contributor to tumor progression; however, whether and how matrix stiffness modulates the collective invasion of tumor cells remain unknown. Here we demonstrate that increased matrix stiffness activates YAP to promote the secretion of periostin (POSTN) in cancer-associated fibroblasts, which in turn augments the matrix rigidity of mammary glands and breast tumor tissues by facilitating collagen crosslinking. Moreover, decreased tissue stiffening resulted from the POSTN deficiency impairs peritoneal metastatic potential of orthotopic breast tumors. Increased matrix stiffness also promotes three-dimensional (3D) collective breast tumor cell invasion via multicellular cytoskeleton remodeling. POSTN triggers the integrin/FAK/ERK/Cdc42/Rac1 mechanotransduction pathway during 3D collective invasion of breast tumor. Clinically, high POSTN expression correlates with high collagen levels in breast tumors and cooperatively determines the metastatic recurrence potential in breast cancer patients. Collectively, these findings indicate that matrix rigidity promotes 3D collective invasion of breast tumor cells via the YAP-POSTN-integrin mechanotransduction signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.