Abstract

Rendering complex scenes with indirect illumination, high dynamic range environment lighting, and many direct light sources remains a challenging problem. Prior work has shown that all these effects can be approximated by many point lights. This paper presents a scalable solution to the many-light problem suitable for a GPU implementation. We view the problem as a large matrix of sample-light interactions; the ideal final image is the sum of the matrix columns. We propose an algorithm for approximating this sum by sampling entire rows and columns of the matrix on the GPU using shadow mapping. The key observation is that the inherent structure of the transfer matrix can be revealed by sampling just a small number of rows and columns. Our prototype implementation can compute the light transfer within a few seconds for scenes with indirect and environment illumination, area lights, complex geometry and arbitrary shaders. We believe this approach can be very useful for rapid previewing in applications like cinematic and architectural lighting design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.