Abstract

Presented in this paper is a novel feature extractor technique based on texture descriptors. Starting from the standard feature vector representation, we study different methods for representing a pattern as a matrix. Texture descriptors are then used to represent each pattern. We examine a variety of local ternary patterns and local phase quantization texture descriptors. Since these texture descriptors extract information using subwindows of the textures (i.e. a set of neighbor pixels), they handle the correlation among the original features (note that the pixels of the texture that describes a pattern are extracted starting from the original feature). We believe that our new technique exploits a new source of information. Our best approach using several well-known benchmark datasets, is obtained coupling the continuous wavelet approach for transforming a vector into a matrix and a variant of the local phase quantization based on a ternary coding for extracting the features from the matrix. Support vector machines are used both for the vector-based descriptors and the texture descriptors. Our experiments show that the texture descriptors along with the vector-based descriptors can be combined to improve overall classifier performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.