Abstract
In this paper, we consider the low-rank matrix recovery problem. We propose the nonconvex regularized least absolute deviations model via ℓ1−αℓ2 (0<α<1) minimization. We establish the theoretical analysis of the proposed model and obtain a stable error estimation. Our result is a nontrivial extension of some previous work. Different from most of the state-of-the-art methods, our method does not need any knowledge of standard deviation or any moment assumption of the noise. Numerical experiments show that our method is effective for many types of noise distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.