Abstract

Bone marrow derived mesenchymal stromal cells (BMSCs) migration to injury site is a prevalent event in tissue repair process after damage occurrence. The migration process is always accompanied with matrix stiffness change. In this study, sodium alginate hydrogels with different stiffness and Transwell chambers with gradient chemical factors were employed to mimic tissue repair in vivo. In this work, in the stiffness range of 1–20 kPa, BMSCs in stiffer matrix showed higher migration speed compared to those in softer matrix. Moreover, stiffer matrix decreased the nuclear stiffness of BMSCs and reduced the expression of lamin A/C, which playing a main role in the regulation of nuclear stiffness. Furthermore, it was found that BMSCs fitted environment by selecting migration strategy. This study provides a novel platform for the investigation of BMSCs migration to mimic the natural tissue repair process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.