Abstract

Quantum many body physics simulations with Matrix Product States can often be accelerated if the quantum symmetries present in the system are explicitly taken into account. Conventionally, quantum symmetries have to be determined before hand when constructing the tensors for the Matrix Product States algorithm. In this work, we present a Matrix Product States algorithm with an adaptive $U(1)$ symmetry. This algorithm can take into account of, or benefit from, $U(1)$ or $Z_2$ symmetries when they are present, or analyze the non-symmetric scenario when the symmetries are broken without any external alteration of the code. To give some concrete examples we consider an XYZ model and show the insight that can be gained by (i) searching the ground state and (ii) evolving in time after a symmetry-changing quench. To show the generality of the method, we also consider an interacting bosonic system under the effect of a symmetry-breaking dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.