Abstract

Each $m$ by $m$ symmetric matrix $M$ over $0, 1, *$, defines a partition problem, in which an input graph $G$ is to be partitioned into $m$ parts with adjacencies governed by $M$, in the sense that two distinct vertices in (possibly equal) parts $i$ and $j$ are adjacent if $M(i,j)=1$, and nonadjacent if $M(i,j)=0$. (The entry $*$ implies no restriction.) We ask which matrix partition problems admit a characterization by a finite set of forbidden induced subgraphs. We prove that matrices containing a certain two by two diagonal submatrix $S$ never have such characterizations. We then develop a recursive technique that allows us (with some extra effort) to verify that matrices without $S$ of size five or less always have a finite forbidden induced subgraph characterization. However, we exhibit a six by six matrix without $S$ which cannot be characterized by finitely many induced subgraphs. We also explore the connection between finite forbidden subgraph characterizations and related questions on the descriptive and computational complexity of matrix partition problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.