Abstract

Let G be the group $$\mathrm {GL}_r(\mathbf {C}) \times (\mathbf {C}^\times )^n.$$ We conjecture that the finely-graded Hilbert series of a G orbit closure in the space of r-by-n matrices is wholly determined by the associated matroid. In support of this, we prove that the coefficients of this Hilbert series corresponding to certain hook-shaped Schur functions in the $$\mathrm {GL}_r(\mathbf {C})$$ variables are determined by the matroid, and that the orbit closure has a set-theoretic system of ideal generators whose combinatorics are also so determined. We also discuss relations between these Hilbert series for related matrices, including their stabilizing behaviour as r increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.