Abstract

Liquid crystalline blue phases (LCBP) and their diffraction patterns were investigated experimentally and theoretically. We measured the diffraction pattern for different wavelengths of monochromatic light with the help of a conoscopic setup of a polarization microscope. Moreover, the diffraction patterns of LCBP and dye-doped LCBP were calculated with the help of a 4×4 matrix method which allows amplitude and phase investigations. It was found that such a matrix method is well suited to simulate optical properties including Bragg diffraction of anisotropic three-dimensional structures with periods below visible light wavelength. We calculated complete Kossel diagrams and compared them with measurements. A contrast inversion phenomenon for Kossel diagrams of LCBP incorporating an anisotropic dye was analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.