Abstract

In this chapter, the authors consider the need and relevance of cryptographic transformation of images and video files that are transmitted from unmanned aircraft, airborne robots. The authors propose and consider new multifunctional matrix-algebraic models of cryptographic image transformations, the variety of matrix models, including block parametrical and matrix affine permutation ciphers. The authors show the advantages of the cryptographic models, such as adaptability to various formats, multi-functionality, ease of implementation on matrix parallel structures, interchangeability of iterative procedures and matrix exponentiation modulo, ease of selection, and control of cryptographic transformation parameters. The simulation results of the proposed algorithms and procedures for the direct and inverse transformation of images with the aim of masking them during transmission are demonstrated and discussed in this chapter. The authors evaluate the effectiveness and implementation reliability of matrix-algebraic models of cryptographic image transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.