Abstract

We present, theoretical predictions and Monte Carlo simulations, for a simple three matrix model that exhibits an exotic phase transition. The nature of the transition is very different if approached from the high or low temperature side. The high temperature phase is described by three self interacting random matrices with no background spacetime geometry. As the system cools there is a phase transition in which a classical two-sphere condenses to form the background geometry. The transition has an entropy jump or latent heat, yet the specific heat diverges as the transition is approached from low temperatures. We find no divergence or evidence of critical fluctuations when the transition is approached from the high temperature phase. At sufficiently low temperatures the system is described by small fluctuations, on a background classical two-sphere, of a U(1) gauge field coupled to a massive scalar field. The critical temperature is pushed upwards as the scalar field mass is increased. Once the geometrical phase is well established the specific heat takes the value 1 with the gauge and scalar fields each contributing 1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.