Abstract

The Wnt signaling transduction pathway plays a critical role in the pathogenesis of several murine and human epithelial cancers. Here, we have used mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice, which develop spontaneous mammary adenocarcinoma, to examine whether matrix metalloproteinases (MMPs)--a family of extracellular proteases implicated in multiple steps of cancer progression--contributed to Wnt1-induced tumorigenesis. An analysis of the expression of several MMPs by RT-PCR and in situ hybridization revealed an increase in the expression of MMP-2, MMP-3, MMP-9, MMP-13, and MT1-MMP (MMP-14) in hyperplastic glands and in mammary tumors of MMTV-Wnt1 transgenic mice. Interestingly, whereas MMP-2, MMP-3, and MMP-9 were exclusively expressed by stromal cells in mammary tumors, MMP-13 and MT1-MMP were expressed by transformed epithelial cells in addition to the tumor stroma. To determine whether these MMPs contributed to tumorigenesis, MMTV-Wnt1 mice were crossed with transgenic mice overexpressing tissue inhibitor of metalloproteinase-2-a natural MMP inhibitor-in the mammary gland. In the double MMTV-Wnt1/tissue inhibitor of metalloproteinases-2 transgenic mice, we observed an increase in tumor latency and a 26.3% reduction in tumor formation. Furthermore, these tumors grew at a slower rate, exhibited an 18% decrease in proliferative rate, and a 12.2% increase in apoptotic rate of the tumor cells in association with a deficit in angiogenesis when compared with tumors from MMTV-Wnt1 mice. Thus, for the first time, the data provides evidence for the active role of MMPs in Wnt1-induced mammary tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.