Abstract

Graphical abstract The phenomenal extracellular matrix (ECM) remodelling of the cervix that precedes the myometrial contraction of labour at term or preterm appears to share some common mechanisms with the occurrence, growth, invasion and metastasis of cervical carcinoma. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are pivotal to the complex extracellular tissue modulation that includes degradation, remodelling and exchange of ECM components, which contribute to homeostasis under normal physiological conditions such as cervical remodelling during pregnancy and puerperium. However, in cancer such as that of the uterine cervix, this extensive network of extracellular tissue modulation is altered leading to disrupted cell–cell and cell–basement membrane adhesion, abnormal tissue growth, neovascularization and metastasis that disrupt homeostasis. Cervical ECM remodelling during pregnancy and puerperium could be a physiological albeit benign neoplasm. In this review, we examined the pathophysiologic differences and similarities in the role of MMPs in cervical remodelling and cervical carcinoma.Lay summaryDuring pregnancy and childbirth, the cervix, which is the barrel-shaped lower portion of the womb that connects to the vagina, gradually softens, shortens and opens to allow birth of the baby. This process requires structural and biochemical changes in the cervix that are stimulated by enzymes known as matrix metalloproteinases. Interestingly, these enzymes also affect the structural and biochemical framework of the cervix during cervical cancer, although cervical cancers usually occur after infection by human papillomavirus. This review is intended to identify and explain the similarities and differences between the structural and chemical changes in the cervix during pregnancy and childbirth and the changes seen in cervical cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call