Abstract

Vascular and cellular invasion into cartilage are essential for endochondral ossification. Recently it has been shown that matrix metalloproteinase-9 (MMP-9)/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. To study vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones, precursor femurs from 13- to 16-day-old murine embryos were sectioned. Tartrate-resistant acid phosphatase (TRAP) activity, in situ hybridization for matrix metalloproteinase-9 (MMP-9), immunostaining for CD31, and in situ detection of apoptosis (TUNEL) were studied. TRAP activity, MMP-9 mRNA, and CD31 expression were initially detected in the intertrabecular spaces of the perichondral collar, and then in cells migrating into the cartilage. The first cells involved in the primary invasion into cartilage were CD31-positive vascular endothelial cells and MMP-9-positive cells, followed by TRAP-positive cells. At the cartilage–marrow interface, CD31-positive vascular endothelial cells and MMP-9-positive cells were predominant. These results suggest that MMP-9-positive cells cooperate with vascular endothelial cells in cartilage angiogenesis. TUNEL-positive staining was detected on chondrocytes attached to the inner surface of the perichondral collar, and also detected in the area where cartilage was removed. These results suggest that chondrocytes separated from the cartilage matrix may undergo apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call