Abstract

Cell proliferation and survival require continuous ribosome biogenesis and protein synthesis. Genes encoding ribosomal RNA are physically located in a specialized substructure within the nucleus known as the nucleolus, which has a central role in the biogenesis of ribosomes. Matrix metalloproteinase-2 was previously detected in the nucleus, however, its role there is elusive. Herein we report that matrix metalloproteinase-2 resides within the nucleolus to regulate ribosomal RNA transcription. Matrix metalloproteinase-2 is enriched at the promoter region of ribosomal RNA gene repeats, and its inhibition downregulates preribosomal RNA transcription. The N-terminal tail of histone H3 is clipped by matrix metalloproteinase-2 in the nucleolus, which is associated with increased ribosomal RNA transcription. Knocking down/out matrix metalloproteinase-2, or inhibiting its activity, prevents histone H3 cleavage and reduces both ribosomal RNA transcription and cell proliferation. In addition to the known extracellular roles of matrix metalloproteinase-2 in tumor growth, our data reveal an epigenetic mechanism whereby intranucleolar matrix metalloproteinase-2 regulates cell proliferation through histone clipping and facilitation of ribosomal RNA transcription.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call