Abstract
Osterix (Osx) is an osteoblast-specific transcription factor required for bone formation and osteoblast differentiation from mesenchymal stem cells. In Osx-null mice, no bone formation occurs. Matrix metalloproteinase 13 (MMP13) is a member of the matrix metalloproteinase family and plays an important role in endochondral ossification and bone remodeling. Transcriptional regulation of MMP13 expression in osteoblasts is not well understood. Here, we provide several lines of evidence which show that MMP13 is a direct target of Osx in osteoblasts. Calvaria obtained from Osx-null embryos displayed dramatic reductions in MMP13 expression compared to wild-type calvaria. Stable overexpression of Osx stimulated MMP13 expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of MMP13 expression. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the MMP13 promoter in a dose-dependent manner. To define the region of the MMP13 promoter that was responsive to Osx, a series of MMP13 promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 80 bp of the MMP13 promoter. Additional point mutant analysis was used to identify one GC-rich region that was responsible for MMP13 promoter activation by Osx. Gel Shift Assay showed that Osx bound to MMP13 promoter sequence directly. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native MMP13 promoter in primary osteoblasts in vivo. Taken together, these data strongly support a direct regulatory role for Osx in MMP13 gene expression in osteoblasts. They further provide new insight into potential mechanisms and pathways that Osx controls bone formation.
Highlights
Bone formation is a highly regulated process involving the differentiation of mesenchymal stem cells to osteoblasts
Of the MMPs, Matrix metalloproteinase 13 (MMP13) has been considered to have an essential role in bone biology in view of its exclusive presence in the skeleton during development
Osx is an osteoblast-specific transcription factor that required for osteoblast differentiation and function
Summary
Bone formation is a highly regulated process involving the differentiation of mesenchymal stem cells to osteoblasts. It involves two processes: intramembranous and endochondral ossification. The majority of bones in the mammalian skeleton form by endochondral ossification which requires a cartilagenous template for osteoblast-directed mineral deposition. Fewer bones, those in the skull, form by intramembranous ossification, a process in which mineralized bone forms directly from mesenchymal condensations without cartilage template. Osteoblast differentiation from mesenchymal stem cells occurs through a multi-step molecular pathway controlled by a complexity of transcription factors and signaling proteins, including Indian Hedgehog, Runx, Osterix (Osx), and Wnt pathway proteins [1]. Wnt pathway affects different stages of bone formation and bone metabolism [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.