Abstract

Matrix metalloproteinase 1 (MMP-1) is an activator of protease-activated receptor 1 (PAR-1), which is known to mediate the release of endothelin 1 (ET-1) in endothelial cells and activate the RhoA kinase (ROCK) pathway. Recently, we reported increased serum and vascular MMP-1 in women with preeclampsia and hypothesized that the action of MMP-1 on PAR-1 might have vasoconstrictive effects. Resistance-sized omental arteries obtained from normal pregnant women were mounted on a myograph system and perfused with MMP-1 in a dose range of 0.025 to 25 ng/mL or with angiotensin II (Ang II) in a dose range of 0.001 to 10 µmol/L in the presence of intraluminal MMP-1 (2.5 ng/mL) perfusion. Angiotensin II dose response was also performed with omental arteries from women with preeclampsia. Matrix metalloproteinase 1 caused dose-dependent vasoconstriction in endothelium-intact, but not in endothelium-denuded, vessels from normal pregnant women, which was blocked by inhibitors of PAR-1 and ET-1 type A receptor blocker. Intraluminal perfusion with a constant amount of MMP-1 enhanced vessel reactivity to Ang II, which was blocked by inhibitors of PAR-1, ROCK, and ET-1. Enhanced vascular reactivity to Ang II was observed in endothelium-intact, but not in endothelium-denuded, arteries of women with preeclampsia. Inhibitors of PAR-1, ROCK, and ET-1 blocked enhanced vascular reactivity to Ang II in endothelium-intact preeclamptic arteries. These data demonstrate that MMP-1 has potent vasoconstrictor effects and the ability to enhance vascular reactivity to vasoconstrictor hormones, which are mediated by an endothelial PAR-1, ROCK, and ET-1 pathway. Increased circulating levels of MMP-1 and its increased expression in systemic vessels of women with preeclampsia may contribute to the development of maternal hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.