Abstract

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvβ1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin β1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.