Abstract

From the environmental consideration, it would be very interesting to use natural fibers such as banana, jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials. Natural fibers have many advantages over synthetic ones. Polypropylene banana fiber composites (PPBC) are prepared using untreated and alkalitreated banana fibers at 10-25% by weight of the fiber loading. The thermal properties of polypropylene natural fiber composites are very important for technological uses. Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers, in comparison with untreated fibers. A composite of biodegradable polypropylene (PP) reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system. The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units. It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites. Physical and chemical changes occurred through dehydration, phase transition, molecular orientation, crystallinity disruption, oxidation and decomposition, and incorporation of several functional groups. Systematic investigations of the thermal behavior of polymers in gas, vacuum or inert atmosphere give the knowledge of how change takes place in polymers. To understand such changes thermogravimetric analysis (TGA) and thermal analysis (TG) were performed. It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC. Due to the enhancement of thermo-mechanical properties, such composites may be used as building materials namely roof materials, selling materials and many other engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call