Abstract
It was shown recently on the basis of DFT calculations (N. P. Gritsan and E. A. Pritchina, Mendeleev Commun., 2001, 11, 94) that the singlet states of aroylnitrenes undergo tremendous stabilization due to an extra N–O bonding interaction. To test experimentally the multiplicity and the structure of the lowest state of benzoylnitrenes we performed a study of their photochemistry in Ar matrices at 12 K. Formation of two species was observed on irradiation of benzoyl azide (1b) and its 4-acetyl derivative (1c). One of these species has an IR spectrum, which is consistent with that of isocyanate (2b,c). The IR and UV spectra of the second intermediate are in very good agreement with the calculated spectra of the singlet species (3b,c), whose structure is intermediate between that of a carbonylnitrene and an oxazirene. We further examined the photochemistry of benzoyl azide in solution at ambient temperatures by nanosecond time-resolved IR methods and obtained additional evidence for the singlet ground state of benzoylnitrene as well as insight into its reactivity in acetonitrile, cyclohexane, and dichloromethane. The above experiments were accompanied by quantum chemical calculations which included also a thorough investigation of the parent species, formylnitrene, at different levels of theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.