Abstract
Matrix isolation studies, combined with infrared spectroscopy, of the twin jet codeposition of ozone into matrices containing either cyclopentadiene or cyclopentene have led to the first observation of several early intermediates in these ozonolysis reactions. Specifically, evidence is presented for the formation, identification, and characterization of the long sought-after Criegee intermediate for each system, as well as the primary and secondary ozonides. These were observed after initial twin jet deposition and grew approximately 300% upon annealing to 35 K. Extensive isotopic labeling ((2)H, (18)O and mixtures) experiments provided important supporting data. Detailed theoretical calculations at the B3LYP/6-311++G(d,2p) and B3LYP/6-311++G(3df, 3pd) levels were carried out as well to augment the experimental work. Merged jet (flow reactor) experiments followed by cryogenic trapping in solid argon led to the formation of "late" stable oxidation products of cyclopentadiene and cyclopentene. In contrast, no thermal reaction between ozone and cyclopentane was observed. Photochemical reactions of ozone with all three organic substrates were studied as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.