Abstract

Reactions of rhodium atoms with dioxygen molecules in solid argon have been investigated using matrix isolation infrared absorption spectroscopy. The rhodium-dioxygen complexes, Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO), are produced spontaneously on annealing. The Rh(eta2-O2) complex rearranges to the inserted RhO2 molecule under visible light irradiation. Experiments doped with xenon in argon show that the rhodium-dioxygen complexes are coordinated by one or two noble gas atoms in solid noble gas matrixes. Hence, the Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO) molecules trapped in solid noble gas matrixes should be regarded as the Rh(eta2-O2)(Ng)2, Rh(eta2-O2)2(Ng)2, and Rh(eta2-O2)2(eta1-OO)(Ng) (Ng = Ar or Xe) complexes. The product absorptions are identified on the basis of isotopic substitution and density functional theory calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.